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Global exponential stability of continuous-time interval neural networks
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This paper addresses global robust stability of a class of continuous-time interval neural networks that
contain time-invariant uncertain parameters with their values being unknown but bounded in given compact
sets. We first introduce the concept of diagonally constrained interval neural networks and present a necessary
and sufficient condition for global exponential stability of these interval neural networks irregardless of any
bounds of nondiagonal uncertain parameters in connection weight matrices. Then we extend the robust stability
result to general interval neural networks by giving a sufficient condition. Simulation results illustrate the
characteristics of the main results.
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I. INTRODUCTION

In recent years, many neural networks have been de
oped to solve various problems. In the design and hardw
implementation of neural networks, a common problem
that parameters acquired in neural networks are inaccu
To design neural networks, vital data such as the neu
firing rate and synaptic interconnection weights usually n
to be measured, acquired, and processed by means of s
tical estimation, which definitely leads to estimation erro
Moreover, parameter fluctuation in neural network circuits
also unavoidable. In practice, we can actually obtain
range of the vital data and the bounds of circuit parame
by engineering experience or from incomplete informatio
This fact implies that a good neural network should ha
certain robustness. Otherwise, the neural network may no
reliable in the practical applications. For example, when
apply an interval neural network having certain robustn
property to solve optimization problems, we do not need
consider spurious suboptimal responses for each param
value of the network, which is of great importance. The
fore, besides asymptotic stability of neural networks, wh
has been studied by many researchers~see, e.g., Refs
@1–12#!, robust stability of neural networks has also receiv
wide attention~e.g., Refs.@13–19#!.

Generally speaking, there are two cases of concern
uncertain parameters. One case is that the bounds of u
tain parameters are constrained. For instance, Forti and
@2# and Ye et al. @13# viewed the uncertain parameters
perturbations and gave some testable criteria for robust
bility of continuous-time Hopfield neural networks. The co
ditions show that the matrix norm of the perturbations sho
be sufficiently small. Feng and Michel@15# established ro-
bust stability results for a class of discrete-time neural n
work model under small perturbations. In all these resu
robustness means that the neural network is not overly
sitive to small perturbations. Recently, anM-matrix condi-
tion to guarantee robust stability for interval Hopfield neu
networks was derived by Liao and Yu@14#. The other case o
concern is that the bounds of uncertain parameters ma
arbitrarily large. In Refs.@16–19#, the absolute stability re
sults, are related to robust stability results to some deg
indicate that the linear state self-feedback coefficient~diago-
1063-651X/2002/65~3!/036133~9!/$20.00 65 0361
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nal! matrix of the network may be arbitrary negative defin
when the connection weight matrix belongs to the particu
setI0 or M0.

This paper first addresses the second case and deriv
necessary and sufficient condition for global robust expon
tial stability of a class of continuous-time interval neur
networks after introducing the concept of diagonally co
strained interval networks. Then we extend the result to m
general cases. The remainder of this paper is organize
follows. Section II describes some preliminaries. The m
results are stated in Sec. III and IV. Illustrative results can
found in Sec. V. Finally, concluding remarks are made
Sec. VI.

II. PRELIMINARIES

Consider a typical continuous-time neural network mo
as follows:

ẋ52Dx1Wg~x!1u, x~0!5x0 , ~1!

where x5(x1 ,x2 , . . . ,xn)TPRn is the state vector,
D5diag(d1 ,d2 , . . . ,dn)PRn3n is a diagonal matrix with
di.0,W5@wi j #PRn3n is a connection weight matrix
u5(u1 ,u2 , . . . ,un)TPRn is an input vector,
g(x)5@g1(x),g2(x), . . . ,gn(x)#T is a vector-valued nonlin-
ear activation function fromRn to Rn. In the following, let
GL denote the class ofglobally Lipschitz continuous and
monotone nondecreasing activation functions; that is, th
exist l̄ i>l i>0 such that; u,rPR and uÞr,

0<l i<
gi~u!2gi~r!

u2r
< l̄ i , i 51,2, . . . ,n.

Definition 1 ~Ref. @16#!. An equilibrium x*
5(x1* ,x2* , . . . ,xn* )T of the neural network~1!, which satis-
fies 2Dx* 1Wg(x* )1u50, is said to be globally asymp
totically stable if it is locally stable in the sense of Lyapun
and globally attractive. The equilibriumx* is said to be glo-
bally exponentially stable if there existm>1 andb.0 such
that ; x0PRn, the positive half trajectoryx(t) of the neural
network ~1! satisfies
©2002 The American Physical Society33-1
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ix~ t !2x* i<mix02x* iexp~2bt !, t>0.

Definition 2.Model ~1! is a continuous-time interval neu
ral network ~CTINN! if D and W are time invariant and
unknown but bounded in given compact sets; i.e., 0,di

<di<d̄i ,wi j <wi j <w̄i j .
D andW in Definition 2 are also called interval matrice

Let Du andWu be two prescribed compact sets to whichD
andW are confined, respectively. It should be noted that
interval network is actually a set of certain networks.

Definition 3.A CTINN ~1! is called to be globally expo
nentially stable if it has a unique equilibriumx* and x* is
globally exponentially stable for any givenuPRn and for
any given parameters belonging to the prescribed given c
pact sets.

Definition 4. Let gPGL. The CTINN ~1! is called a di-
agonally constrained CTINN (D,W,u) if w̄ii ,di / l̄ i ,i
51,2, . . . ,n.

It is noted that for a diagonally constrained interval neu
network (D,W,u) there is no restriction for nondiagonal e
tries of W. In other words, only the bounds of self-feedba
terms inW are subject to constraints. Furthermore, the in
vectoru is arbitrary.

For a certain neural network, to study the glob
asymptotic stability of model~1! by applying the Lyapunov
function method, we need to transform model~1! into a form
where the origin is an equilibrium. Letx* be an equilibrium
of model~1! andz5(z1 ,z2 , . . . ,zn)T5x2x* be a new state
vector. Then, model~1! can be expressed in terms ofz as

ż52Dz1W f~z!, z~0!5z0 , ~2!

where f (z)5@ f 1(z1), . . . ,f n(zn)#T5g(z1x* )2g(x* )
PGL and f (0)50. Hence, If a CTINN~1! has at least one
equilibrium for eachDPDu and WPWu , then the robust
stability of CTINN ~1! is equivalent to that of the interva
neural network~2!.

In the sequel, forxPRn, let ixi denote the Euclidean
vector norm; i.e.,ixi5(xTx)1/2. For a matrixAPRn3n, let
lmin(A) @or lmax(A)# denote the smallest~or largest! eigen-
value of all the eigenvalues ofA, and letiAi denote the norm
of A induced by the Euclidean vector norm; i.e

iAi5Almax(A
TA). I n is the n3n identity matrix. @PA#S

5(ATP1PA)/2. Let L5diag(l 1 ,l 2 , . . . ,l n) and

M,W2DL̄21, ~3!

whereL̄5diag(l̄ 1 , l̄ 2 , . . . ,l̄ n).
Definition 5.An n3n matrix C5@ci j # is called to be a

binary matrix if every entryci j of the matrix is either 0 or 1.
Let S denote the set of all diagonally constrained inter
neural networks (D,W,u) defined in Definition 4. LetSc
denote a subset ofS determined by the following rule
(D,W,u)PS if M5C* M where * represents the Hadama
product operation andM5@mi j # is defined in Eq.~3!; i.e.,
C* M5@ci j mi j #. A binary matrix is also called a pattern ma
trix in Refs. @20,21#.
03613
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Obviously, to check if a diagonally constrained interv
network (D,W,u)PSc , we only need to check ifmi j [0
whenci j 50. According to Definition 5, the setS is divided
into some subsetsSc by binary matricesC. For fixed order
networks, since there are only a finite number of possi
binary matricesC the number of subsetsSc is also finite.
Note that some subsetsSc may not be disjoint. For example
if

C15F1 0

0 1G , C25F1 0

1 1G , C35F1 1

1 1G ,
thenSc1

,Sc2
,Sc3

.
In the following, it will be shown that there are speci

binary matricesC having the following property: every in
terval network (D,W,u)PSc is globally exponentially
stable.

Definition 6. Given an n3n binary matrix C5@ci j #
~wherecii 51,i 51, . . . ,n). If detC[c11c22•••cnn51, then
the binary matrixC is said to satisfy diagonal determina
condition.

Similarly, we also define the diagonal determinant con
tion for any matrix M5@mi j #n3n satisfying detM
[m11m22•••mnnÞ0. For example, all possible 333 binary
matrices satisfying diagonal determinant condition a
shown below,

F 1 * *

0 1 *

0 0 1
G ,F 1 * *

0 1 0

0 * 1
G ,F 1 0 0

* 1 0

* * 1
G ,F 1 0 *

* 1 *

0 0 1
G ,

F 1 0 0

* 1 *

* 0 1
G ,F 1 * 0

0 1 0

* * 1
G .

However, the following matrix

F 1 1 0

1 1 0

0 0 1
G

does not satisfy diagonal determinant condition.
Lemma 1.Given any binary matrixC5@ci j #n3n where

cii 51 for all i 51, . . . ,n. If there existcki51 (iÞk) and
cjk51 ( j Þk) for all 1<k<n, then detC[” c11•••cnn .

Proof. Consider the worst case: there only exists a n
zero entry in thei th row and thei th column except forcii for
all i 51, . . . ,n. For convenience, these nonzero entries m
be expressed byc1i 1

, . . . ,cnin
wherei jÞ j ( j 51, . . . ,n) and

i kÞ i s(k,s51, . . . ,n, andkÞs). It is easy to see that ther
existsc1i 1

•••cnin
51 in detC. Hence, detC[” c11•••cnn .

When there are other nonzero entries inC besides those
nonzero entries under the worst case above, it is trivial t
detCÓc11•••cnn .

Lemma 2. For any given binary matrix C
5@ci j #n3n,@c1

T
••• cn

T#T where n>2, if detC
[c11•••cnn51, then there existsl (1< l<n) such that
3-2
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cl5~0, . . . ,0, cll , 0, . . . ,0!. ~4!

Proof. We prove Lemma 2 by mathematical inductio
Consider a 232 matrix C. Since detC[c11c2251, we im-
mediately have eitherc1250 or c2150 and consequently
c15(c11, 0) or c25(0, c22).

Assume that for anyn3n binary matrix C satisfying
detC[c11•••cnn51, there exists somel (1< l<n) such
that Eq.~4! holds. Then we will show that for any (n11)
3(n11) binary matrix C1 satisfying detC1

[c00c11•••cnn51, there exists somel 1 (0< l 1<n) such
that cl 1

1
5(0, . . . ,0,cl 1 l 1,0, . . . ,0)whereC1 is written by

C1,F c00 c01•••c0n

A C

cn0

G,F c0
1

A

cn
1
G,@ ĉ0

1 ĉ1
1
••• ĉn

1#. ~5!

First consider the first row and column ofC1. If c0
1

5(c00,0, . . .,0), then it is trivial that l 150. If ĉ0
1

5(c00,0, . . . ,0)T, then detC15c00detC5c00c11•••cnn .
By assumption forC, there exists somel (1< l<n) such
that Eq. ~4! holds. Hence, whenl 15 l , cl 1

1
5(0, cl)

5(0, . . . ,0,cll ,0, . . .,0).
Now we only need to consider the following case: the

exist c0i
151 (iÞ0) andcj 0

1 51 ( j Þ0).
Similarly, in turn for all k51, . . . ,n we only need to

consider the following cases: there existcki
151 (iÞk) and

cjk
151 ( j Þk). Therefore, it follows from Lemma 1 tha

detC1[” c00c11•••cnn , which contradicts detC1

[c00c11•••cnn .
By mathematical induction, we have proved Lemma 2

III. GLOBAL EXPONENTIAL STABILITY OF
DIAGONALLY CONSTRAINED CTINNS

In this section, we state a global exponential stability co
dition for diagonally constrained CTINN~1!. WhengPGL
and g(0)50, a necessary and sufficient condition for ex
tence and uniqueness of equilibrium of Eq.~1! was given in
Theorem 1 in Ref.@5#. In fact, g(0)50 is not necessarily
required. So,Theorem 1 in Ref.@5# can be restated as fo
lows.

Lemma 3.Let L5diag(l 1 ,l 2 , . . . ,l n) and gPGL. A
certain neural network~1! has a unique equilibrium for an
given uPRn if and only if 2D1WL is nonsingular; l i

P@ l i , l̄ i #.
Theorem 1.Let gPGL. Every diagonally constrained

CTINN (D,W,u) in Sc is globally exponentially stable i
and only if the matrixC satisfies diagonal determinant co
dition.

Proof (Sufficiency).Given any diagonally constrained in
terval network (D,W,u)PSc whereC is assumed to satisfy
diagonal determinant condition. Then

di. l̄ i w̄i i , i 51,2, . . . ,n, ~6!

and
03613
-

-

det~2D1WL![~2d11w11l 1!

3~2d21w22l 2!•••~2dn1wnnl n!.

~7!

Hence2D1WL is nonsingular for anyDPDu ,WPWu ,
and anyl iP@ l i , l̄ i #. Hence, from Lemma 3 it follows tha
any certain network (D,W,u) has an unique equilibrium
whereDPDu and WPWu . Thus, we only need to discus
global exponential stability of the transformed interval n
work ~2!.

Next we first prove the following statement: there exist
positive diagonal matrixP5diag(p1 ,p2 , . . . ,pn) such that

~2DL̄211W!TP1P~2DL̄211W!,0, ~8!

; DPDu and ; WPWu if the interval network (D,W,u)
PSc and the binary matrixC satisfies diagonal determinan
condition. Considern51. Since (D,W,u)PSc and the bi-
nary matrix C satisfies diagonal determinant condition, w
haveC5@1#, D5@d#, W5@w#, andd. l̄ w̄. In this case,
selectP5@1# that is positive definite, we can trivially guar
antee that (W2D/ l̄ )P1P(W2D/ l̄ ),0 for any DPDu
andWPWu . Assume that the statement holds in the case
n. Then, we will show that the statement also holds in
case ofn11. Let the interval network (D1,W1,u1)PSc1

1

and the binary matrixC1 satisfy diagonal determinant con
dition. Let

C15@ci j
1#5F c1

1

A

cn11
1

G .

Since C1 satisfies diagonal determinant condition, b
Lemma 2 there exists somel 1(1< l 1<n11) such thatcl 1

1

5(0, . . . ,0,cl 1 l 1
1 ,0, . . . ,0)wherecl 1 l 1

1
51.

Without a loss of generality, we assumel 15n11; i.e.,
cn11

1 5(0, . . . ,0,1). From (D1,W1,u1)PSc1
1 , we may de-

note

W15F *

W A

*

0•••0 wn11 n11

G ~9!

and D15diag(D,dn11) where each * denotes an unce
tainty. We may also denote

C15F *

C A

*

0•••0 1

G , ~10!

where * is 0 or 1. Then in view that (D1,W1,u1)PSc1
1

andC1 satisfies diagonal determinant condition we can
3-3
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that (D,W,u)PSc and C above also satisfies diagona
determinanted condition. By assumption, there exists a p
tive diagonal matrix P such that (2DL̄211W)TP

1P(2DL̄211W),0 for any DPDu and WPWu . Let
L̄15diag(L̄, l̄ n11) and

P15F P 0

0T pn11
G ,

where 0 is a zero vector. Then

@2D1~ L̄1!211W1#TP11P1@2D1~ L̄1!211W1#

5Fp~D,W,P! m~W1,P!

m~W1,P!T 2pn11~2dn11l̄ n11
21 1wn11 n11!

G ,

~11!

where p(D,W,P)5(2DL̄211W)TP1P(2DL̄211W)
and m(W1,P)5P(* •••*) T. To guarantee that Eq.~11! is
negative definite for allD1PDu1

1 andW1PWu1
1 , we only

need to choose
03613
i- max:H im~W1,P!i2

~2dn11l̄ n11
21 1wn11 n11!lmax@p~D,W,P!#

:

D1PDu1
1 , W1PWu1

1 J . ~12!

This shows that the statement is true in the casen11.
By the above mathematical induction, we have proved

statement.
Let D5diag(d1 ,d2 , . . . ,dn). Consider the following

Lyapunov function

V~z!5
1

2
zTD21z1

k

« (
i 51

n

pi E
0

zi
f i~r!dr ~13!

with P as defined in Eq.~8!, any fixed number«P(0,1), and
the constantk defined by

k,
max

WPWu

~ iD21Wi2!

4 min
DPDu ,WPWu

„lmin$~@P~DL̄212W!#S%…
>0.

Computing the time derivative ofV(z) along the positive
half trajectory of Eq.~2! yields
dV~z!

dt
5@D21z1~k/«!P f~z!#T@2Dz1W f~z!#

52zTD21Dz1zTD21W f~z!~k/«! f ~z!TPDz1~k/«! f ~z!T@PW#Sf ~z!

<2zTz1zTD21W f~z!~k/«! f ~z!TPDL̄21f ~z!1~k/«! f ~z!T@PW#Sf ~z!

52zTz1zTD21W f~z!2~k/«! f ~z!T@P~DL̄212W!#Sf ~z!

<2izi21S «izi21
1

4«
iD21W f~z!i2D2~k/«! f ~z!T@P~DL̄212W!#Sf ~z!

<2izi21S «izi21
1

4«
iD21Wi2i f ~z!i2D ~k/«! f ~z!T@P~DL̄212W!#Sf ~z!

<2~12«!izi21S 1

4«
max

WPWu

~ iD21Wi2!2~k/«! min
DPDu ,WPWu

~lmin$@P~DL̄212W!#S%!D i f ~z!i2

52~12«!izi2. ~14!
From Eq. ~13! and 0<r f i(r)< l̄ ir
2 (rPR) for i

51,2, . . . ,n it follows that ; zPRn,

1

2
zTD21z<V~z!<

1

2
zTD21z1

k

« (
i 51

n

pi l̄ i E
0

zi
rdr

5
1

2
zTD21z1

k

2« (
i 51

n

pi l̄ izi
2. ~15!

Let
d15 max
1< i<n

~di ! and

d25d2~«!5 max
1< i<n

1

di
1

k

«
A(

i 51

n

~pi l̄ i !
2. ~16!

Then

izi2/~2d1!<V~z!<d2izi2/2, ; zPRn.
3-4
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Thus, from Eq.~14! we have

dV~z!/dt<2
2~12«!

d2
V~z!, ; zPRn.

So,

V„z~ t !…<V~z0!expS 2
2~12«!

d2
t D , ; z0PRn, ; t>0,

which yields

iz~ t !i<Ad1d2iz0iexpS 2
12«

d2
t D , ; z0PRn, ; t>0.

Hence, model~2! is globally exponentially stable at the equ
librium z50; that is, the diagonally constrained interval ne
work (D,W,u) in Sc is globally exponentially stable at a
exponential rate of at least (12«)/d2 with d25d2(«) de-
fined in Eq.~16! where«P(0,1) is any fixed number.

(Necessity). In order to prove the necessity of Theorem
we only need to equivalently prove the following. If a bina
matrix C5@ci j # does not satisfy diagonal determinant co
dition, then, not every interval network (D,W,u)PSc is glo-
bally exponentially stable, or there must be an inter
network (D,W,u)PSc that is not globally exponentially
stable.

According to the definition of diagonal determin
ant condition, whenC does not satisfy diagonal determin
ant condition; i.e., detC[” c11•••cnn51, then
there must exist c1i 1

,c2i 2
, . . . ,cnin

51 where i j ( j

51, . . . ,n)P$1,2, . . . ,n% and $c1i 1
,c2i 2

, . . . ,cnin
%

ø$c11,c22, . . . ,cnn%Þ$c11,c22, . . . ,cnn%.
Without a loss of generality, assumec12c21c33c44•••cnn

51. Let gPGL andL̄5I n . Now consider a diagonally con
strained interval network (D,W,u) where

D5I n ,W5F 1
2 w12 ••• 0

w21
1
2 ••• 0

A A � A

0 0 •••
1
2

G , ~17!
03613
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and entriesw12 andw21 are interval entries. We easily chec
that the above interval network (D,W,u)PSc .

In the following, by contradiction we will prove that th
network (D,W,u) is not globally asymptotically stable whe
w̄12 and w̄21 are sufficiently large andw12 and w21 are se-
lected to be large enough.

Assume that the network (D,W,u) is globally asymptoti-
cally stable no matter how largew12 and w21 are. From
Lemma 3 it follows that2D1WL̄52D1W is nonsingular.
On the other hand, rewrite

2D1W5F 2 1
2 w12 ••• 0

w21 2 1
2 ••• 0

A A � A

0 0 ••• 2 1
2

G .

When w̄125w̄2151/2, we may selectw125w2151/2. Then
det(2D1W)50, which contradicts2D1W being nonsin-
gular.

For a diagonally constrained CTINN (D,W,u), if
2DL̄211W satisfies diagonal determinant condition, th
based on Theorem 1 the CTINN (D,W,u) is globally expo-
nentially stable, regardless of the bounds of nondiagonal
tries ofW for any given input vectoru. Furthermore, since it
is very easy to check if a matrix satisfies diagonal deter
nant condition, Theorem 1 gives a convenient way to ens
global exponential stability of an interval network. Theore
1 is applicable for the diagonally constrained interval n
works. However, it is invalid for general interval networks

IV. GLOBAL EXPONENTIAL STABILITY OF GENERAL
CTINNS

For general CTINNs~1!, in this section we supply a resu
of global exponential stability. For a matrix satisfyin
diagonal-determinanted condition, there must exist so
nondiagonal zero entries. Replace these zero entries by s
perturbations. Now we consider the following general int
val networks described by

ẋ52Dx1~W1DW!g~x!1u, ~18!
t
FIG. 1. Globally exponentially convergen
transient statesx1 and x2 in Example 1 with
w2156 andu5(23,3)T.
3-5
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FIG. 2. Globally exponentially convergen
transient statesx1 and x2 in Example 1 with
w21526 andu5(23,3)T.
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whereDW5@Dwi j #, the interval network (D,W,u)PSc and
C satisfies diagonal determinant condition. Since the bou
of nondiagonal entries ofW may be arbitrarily large in this
case, for simplicity, we make the following assumption: f
iÞ j , perturbationDwi j will be possibly encountered onl
when wi j [0. Similar to the definitions ofDu and Wu , let
DWu be a prescribed compact set to whichDW is confined.
In the remaining part of this section, we will focus on th
interval networks~18! with another uncertainties; i.e., sma
perturbations. Since the interval network (D,W,u)PSc and
C satisfies diagonal determinant condition, it follows fro
the proof of Theorem 1 that there exists a positive diago
matrix P5diag(p1 ,p2 , . . . ,pn).0 such that

@P~2DL̄211W!#S,0, ; DPDu and ; WPWu .
~19!

Next, we introduce the following result for general inte
val networks.

Theorem 2.The CTINN ~18! is globally exponentially
stable if

j,2 min
DPDu ,WPWu

„lmin~@PM#S!…2pmaxiDWiu* .0,

~20!

whereM andP are defined in Eq.~3! and~19!, respectively,
pmax,max$p1,p2, . . . ,pn%, and

iDWiu*, max
DWPDWu

iDWi .

Proof. From Eq.~20! we have
03613
ds

al

@P~2DL̄211W1DW!#S

5@PDW#S1@P~2DL̄211W!#S

<@pmaxiDWiu* 2 min
DPDu ,WPWu

„lmin~@PM#S!…#I n .

52jI n,0. ~21!

Then ~i! given any 0,L<L̄, we have @P(W1DW

2DL21)#S<@P(W1DW2DL̄21)#S,0, which shows that
W1DW2DL21 is stable or nonsingular, and consequen
2D1(W1DW)L5(2DL211W1DW)L is nonsingular;
~ii ! given any 0<L<L̄ where there exists at least som
l i* 50 (1< i * <n). Without a loss of generality, assum
0,l i< l̄ i ,i 51,2,•••,n21, and l n50. Partition
D,L,W,DW as

D5FD1 0

0 dn
G , L5FL1 0

0 l n
G , W5F W11 W1n

Wn1 wnn
G ,

DW5F DW11 DW1n

DWn1 Dwnn
G .

Similar to case ~i!, we can deduce that2D11(W11
1DW11)L1 is nonsingular. So,

2D1~W1DW!L5F2D11~W111DW11!L1 0

~Wn11DWn1!L1 2dn
G

t
FIG. 3. Globally exponentially convergen
transient statesx1 and x2 in Example 2 with an
input vectoru5(23,3)T andx05(6,26)T.
3-6
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is nonsingular. In view of~i! and ~ii !, 2D1(W1DW)L is
nonsingular for any DPDu ,WPWu ,DWPDWu , and
; l iP@ l i , l̄ i #. Hence, given anyuPRn, according to
Lemma 3, any certain network~18! has a unique equilibrium
x* . So the robust stability of the interval network~18! is
equivalent to that of the transformed interval network

ż52Dz1~W1DW! f ~z!, ~22!

where f (z)5@ f 1(z1), f 2(z2), . . . ,f n(zn)#T5g(z1x* )
2g(x* )PGL, f (0)50, and the equilibrium is the origin.
i-

03613
Consider the Lyapunov functionV(z) in Eq. ~13! where
the constantk is defined by

k,
max

WPWu ,DWPDWu

„iD21~W1DW!i2
…

4j
>0.

Computing the time derivative ofV(z) along the positive
half trajectory of Eq.~22! yields
dV~z!

dt
5@D21z1~k/«!P f~z!#T@2Dz1~W1DW! f ~z!#

52zTD21Dz1zTD21~W1DW! f ~z!2~k/«! f ~z!TPDz1~k/«! f ~z!T@P~W1DW!#Sf ~z!

<2zTz1zTD21~W1DW! f ~z!2~k/«! f ~z!TPDL̄21f ~z!1~k/«! f ~z!T@P~W1DW!#Sf ~z!

52zTz1zTD21~W1DW! f ~z!1~k/«! f ~z!T@P~2DL̄211W1DW!#Sf ~z!

<2zTz1zTD21~W1DW! f ~z!2~kj/«!i f ~z!i2 @ from Eq. ~21!#

<2izi21S «izi21
1

4«
iD21~W1DW! f ~z!i2D2~kj/«!i f ~z!i2

<2izi21S «izi21
1

4«
iD21~W1DW!i2i f ~z!i2D2~kj/«!i f ~z!i2<2~12«!izi2

1S 1

4«
max

WPWu ,DWPDWu

„iD21~W1DW!i2
…2

kj

« D i f ~z!i2

52~12«!izi2.
n

al
Similar to the last part of the proof~sufficiency! of Theorem
1, we can see that the interval network~18! is globally ex-
ponentially stable.

For any given diagonally constrained CTINN~1! whereW

is replaced byW̃,@W̃i j #, properly decompose CTINN~1!
into the interval network~18!. If the interval network
(D,W,u)PSc whereC satisfies diagonal determinant cond
tion, then we can obtain a positive diagonal matrixP as
defined in Eq.~8! by Theorem 1. In this case, if the conditio
~20! further holds, then CTINN~1! is globally exponentially
stable.

For a certain neural network~1!, there exist many criteria
for connection weight matrices to ascertain glob
asymptotic or exponential stability and absolute~or absolute
FIG. 4. Divergent transient statesx1 andx2 in
Example 2 with w2150.9,Dw1250.41, and u
5(23,3)T.
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exponential! stability ~see, e.g., Refs.@17,18# for details!.
However, a characterization of any criteria~algebraic or oth-
erwise! would be a hard problem for a general neural n
work ~see Ref.@17#!. In terms of computational complexity
the characterization may well be not polynomial hard. For
interval neural network~1! @including a set of certain neura
networks~1!#, Theorem 1 or Theorem 2 provides a simp
and effective method to ascertain global exponential stabi

V. ILLUSTRATIVE EXAMPLES

Example 1.Consider a two-neuron diagonally constrain
CTINN ~1! wheregi(u)5max(u,0), i 51,2, D5I 2 , uPR2,

W5Fw11 0

w21 w22
G ,

andw115w2250.5 are certain. We assume the uncertain
rameteruw21u<w̄21. Obviously, L̄5I 2 and the matrixM5

2DL̄211W satisfies diagonal determinant condition. A
cording to Theorem 1, the interval network is globally exp
nentially stable for any given input vectoru no matter how
large the boundw̄21. To verify this point by simulation, we
use special selections ofu and w21 ~see Figs. 1 and 2!. We
choose 40 uniformly distributed random points in the
@26,6#3@26,6# as the initial states of the positive half tra
jectories of the neural network. It can be seen from Fig. 1
Fig. 2 that all the trajectories from these initial points exp
nentially converge to a unique equilibrium. Figures 1 and
imply that this interval network is globally exponential
stable.

Example 2. Consider the CTINN ~18! where gi(u)
5max(u,0), i 51,2, D5I 2 , uPR2,

W5F 0.5 0

w21 0.5G , DW5F0 Dw12

0 0 G , and uw21u<0.9.

As Example 1, we can see that the matrixM52DL̄21

1W satisfies the diagonal determinant condition. Accord
to Theorem 1, the interval network (D,W,u) is globally ex-
.

-

l.

03613
-

n

y.

-

-

t

r
-
2

g

ponentially stable. Moreover there exists a positive diago
matrix P5diag(2,1) ~consequently,pmax52) such that@P

(2DL̄211W)#S,0, ; uw21u<0.9. A straightforward com-
putation can obtain

min
uw21u<0.9

„lmin$@P~DL̄212W!#S%…50.2352.

In view of Eq. ~20!, we easily getuDw12u,0.1176. Hence,
whenuDw12u<0.117, Theorem 2 guarantees the interval n
work is globally exponentially stable. To simulate, we sele
w21 ~varying from20.9 and 0.9 by step length of 0.3) an
Dw12 ~varying from 20.117 and 0.117 by step length o
0.117). Figure 3 describes the transient statesx1 andx2 with
a given common input vectoru5(23, 3)T and the initial
condition x05(6, 26)T. Figure 3 shows the global expo
nential convergence of the statesx1 and x2 of the interval
network. When the bound of perturbationDw12 is over large,
Theorem 1 points out that the interval network is no long
globally exponentially stable. For example, whenw21
50.9, Dw1250.41,u5(23, 3)T, and the initial condition
x05(6,5)T, Fig. 4 shows the divergent transient statesx1 and
x2 of the network.

VI. CONCLUSIONS

In this paper, we study the global exponential stability
a class of continuous-time interval neural networks. Ba
on diagonally constrained interval neural network, we est
lish a necessary and sufficient condition for global expon
tial stability of these interval networks. The condition is ea
to check. The bounds of nondiagonal uncertain paramete
the connection weight matrix may be arbitrarily large. W
also extend the result to general interval networks. To de
onstrate the characteristics of the derived results, two spe
examples are discussed in detail.
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